Merges epidemiological data from two independent simulations of
stochastic network models from netsim
.
Usage
# S3 method for class 'netsim'
merge(
x,
y,
keep.transmat = TRUE,
keep.network = TRUE,
keep.nwstats = TRUE,
keep.other = TRUE,
param.error = TRUE,
keep.diss.stats = TRUE,
...
)
Arguments
- x
An
EpiModel
object of classnetsim
.- y
Another
EpiModel
object of classnetsim
, with the identical model parameterization asx
.- keep.transmat
If
TRUE
, keep the transmission matrices from the originalx
andy
elements. Note: transmission matrices only saved when (save.transmat == TRUE
).- keep.network
If
TRUE
, keep thenetworkDynamic
objects from the originalx
andy
elements. Note: network only saved when (tergmLite == FALSE
).- keep.nwstats
If
TRUE
, keep the network statistics (as set by thenwstats.formula
parameter incontrol.netsim
) from the originalx
andy
elements.- keep.other
If
TRUE
, keep the other simulation elements (as set by thesave.other
parameter incontrol.netsim
) from the originalx
andy
elements.- param.error
If
TRUE
, ifx
andy
have different params (inparam.net
) or controls (passed incontrol.net
) an error will prevent the merge. UseFALSE
to override that check.- keep.diss.stats
If
TRUE
, keepdiss.stats
from the originalx
andy
objects.- ...
Additional merge arguments (not currently used).
Value
An EpiModel
object of class netsim
containing
the data from both x
and y
.
Details
This merge function combines the results of two independent simulations of
netsim
class models, simulated under separate function calls.
The model parameterization between the two calls must be exactly the same,
except for the number of simulations in each call. This allows for manual
parallelization of model simulations.
This merge function does not work the same as the default merge, which allows for a combined object where the structure differs between the input elements. Instead, the function checks that objects are identical in model parameterization in every respect (except number of simulations) and binds the results.
Examples
# Network model
nw <- network_initialize(n = 100)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)
est <- netest(nw, formation = ~edges, target.stats = 25,
coef.diss = coef.diss, verbose = FALSE)
#> Starting maximum pseudolikelihood estimation (MPLE):
#> Obtaining the responsible dyads.
#> Evaluating the predictor and response matrix.
#> Maximizing the pseudolikelihood.
#> Finished MPLE.
# Epidemic models
param <- param.net(inf.prob = 1)
init <- init.net(i.num = 1)
control <- control.net(type = "SI", nsteps = 20, nsims = 2,
save.nwstats = TRUE,
nwstats.formula = ~edges + degree(0),
verbose = FALSE)
x <- netsim(est, param, init, control)
y <- netsim(est, param, init, control)
# Merging
z <- merge(x, y)
# Examine separate and merged data
as.data.frame(x)
#> sim time s.num i.num num si.flow
#> 1 1 1 99 1 100 NA
#> 2 1 2 99 1 100 0
#> 3 1 3 99 1 100 0
#> 4 1 4 99 1 100 0
#> 5 1 5 99 1 100 0
#> 6 1 6 99 1 100 0
#> 7 1 7 99 1 100 0
#> 8 1 8 99 1 100 0
#> 9 1 9 99 1 100 0
#> 10 1 10 99 1 100 0
#> 11 1 11 99 1 100 0
#> 12 1 12 99 1 100 0
#> 13 1 13 99 1 100 0
#> 14 1 14 99 1 100 0
#> 15 1 15 99 1 100 0
#> 16 1 16 99 1 100 0
#> 17 1 17 98 2 100 1
#> 18 1 18 98 2 100 0
#> 19 1 19 98 2 100 0
#> 20 1 20 98 2 100 0
#> 21 2 1 99 1 100 NA
#> 22 2 2 99 1 100 0
#> 23 2 3 99 1 100 0
#> 24 2 4 99 1 100 0
#> 25 2 5 99 1 100 0
#> 26 2 6 99 1 100 0
#> 27 2 7 99 1 100 0
#> 28 2 8 98 2 100 1
#> 29 2 9 98 2 100 0
#> 30 2 10 98 2 100 0
#> 31 2 11 98 2 100 0
#> 32 2 12 98 2 100 0
#> 33 2 13 98 2 100 0
#> 34 2 14 98 2 100 0
#> 35 2 15 98 2 100 0
#> 36 2 16 98 2 100 0
#> 37 2 17 98 2 100 0
#> 38 2 18 98 2 100 0
#> 39 2 19 98 2 100 0
#> 40 2 20 98 2 100 0
as.data.frame(y)
#> sim time s.num i.num num si.flow
#> 1 1 1 99 1 100 NA
#> 2 1 2 98 2 100 1
#> 3 1 3 97 3 100 1
#> 4 1 4 96 4 100 1
#> 5 1 5 96 4 100 0
#> 6 1 6 96 4 100 0
#> 7 1 7 96 4 100 0
#> 8 1 8 95 5 100 1
#> 9 1 9 94 6 100 1
#> 10 1 10 92 8 100 2
#> 11 1 11 91 9 100 1
#> 12 1 12 90 10 100 1
#> 13 1 13 89 11 100 1
#> 14 1 14 89 11 100 0
#> 15 1 15 89 11 100 0
#> 16 1 16 89 11 100 0
#> 17 1 17 88 12 100 1
#> 18 1 18 87 13 100 1
#> 19 1 19 86 14 100 1
#> 20 1 20 85 15 100 1
#> 21 2 1 99 1 100 NA
#> 22 2 2 99 1 100 0
#> 23 2 3 99 1 100 0
#> 24 2 4 99 1 100 0
#> 25 2 5 99 1 100 0
#> 26 2 6 99 1 100 0
#> 27 2 7 99 1 100 0
#> 28 2 8 99 1 100 0
#> 29 2 9 99 1 100 0
#> 30 2 10 99 1 100 0
#> 31 2 11 99 1 100 0
#> 32 2 12 99 1 100 0
#> 33 2 13 99 1 100 0
#> 34 2 14 99 1 100 0
#> 35 2 15 99 1 100 0
#> 36 2 16 99 1 100 0
#> 37 2 17 99 1 100 0
#> 38 2 18 99 1 100 0
#> 39 2 19 99 1 100 0
#> 40 2 20 99 1 100 0
as.data.frame(z)
#> sim time s.num i.num num si.flow
#> 1 1 1 99 1 100 NA
#> 2 1 2 99 1 100 0
#> 3 1 3 99 1 100 0
#> 4 1 4 99 1 100 0
#> 5 1 5 99 1 100 0
#> 6 1 6 99 1 100 0
#> 7 1 7 99 1 100 0
#> 8 1 8 99 1 100 0
#> 9 1 9 99 1 100 0
#> 10 1 10 99 1 100 0
#> 11 1 11 99 1 100 0
#> 12 1 12 99 1 100 0
#> 13 1 13 99 1 100 0
#> 14 1 14 99 1 100 0
#> 15 1 15 99 1 100 0
#> 16 1 16 99 1 100 0
#> 17 1 17 98 2 100 1
#> 18 1 18 98 2 100 0
#> 19 1 19 98 2 100 0
#> 20 1 20 98 2 100 0
#> 21 2 1 99 1 100 NA
#> 22 2 2 99 1 100 0
#> 23 2 3 99 1 100 0
#> 24 2 4 99 1 100 0
#> 25 2 5 99 1 100 0
#> 26 2 6 99 1 100 0
#> 27 2 7 99 1 100 0
#> 28 2 8 98 2 100 1
#> 29 2 9 98 2 100 0
#> 30 2 10 98 2 100 0
#> 31 2 11 98 2 100 0
#> 32 2 12 98 2 100 0
#> 33 2 13 98 2 100 0
#> 34 2 14 98 2 100 0
#> 35 2 15 98 2 100 0
#> 36 2 16 98 2 100 0
#> 37 2 17 98 2 100 0
#> 38 2 18 98 2 100 0
#> 39 2 19 98 2 100 0
#> 40 2 20 98 2 100 0
#> 41 3 1 99 1 100 NA
#> 42 3 2 98 2 100 1
#> 43 3 3 97 3 100 1
#> 44 3 4 96 4 100 1
#> 45 3 5 96 4 100 0
#> 46 3 6 96 4 100 0
#> 47 3 7 96 4 100 0
#> 48 3 8 95 5 100 1
#> 49 3 9 94 6 100 1
#> 50 3 10 92 8 100 2
#> 51 3 11 91 9 100 1
#> 52 3 12 90 10 100 1
#> 53 3 13 89 11 100 1
#> 54 3 14 89 11 100 0
#> 55 3 15 89 11 100 0
#> 56 3 16 89 11 100 0
#> 57 3 17 88 12 100 1
#> 58 3 18 87 13 100 1
#> 59 3 19 86 14 100 1
#> 60 3 20 85 15 100 1
#> 61 4 1 99 1 100 NA
#> 62 4 2 99 1 100 0
#> 63 4 3 99 1 100 0
#> 64 4 4 99 1 100 0
#> 65 4 5 99 1 100 0
#> 66 4 6 99 1 100 0
#> 67 4 7 99 1 100 0
#> 68 4 8 99 1 100 0
#> 69 4 9 99 1 100 0
#> 70 4 10 99 1 100 0
#> 71 4 11 99 1 100 0
#> 72 4 12 99 1 100 0
#> 73 4 13 99 1 100 0
#> 74 4 14 99 1 100 0
#> 75 4 15 99 1 100 0
#> 76 4 16 99 1 100 0
#> 77 4 17 99 1 100 0
#> 78 4 18 99 1 100 0
#> 79 4 19 99 1 100 0
#> 80 4 20 99 1 100 0