Subsets the entire netsim
object to a subset of
simulations, essentially functioning like a reverse of
merge
.
Arguments
- x
An object of class
netsim
.- sims
Either a numeric vector of simulation numbers to retain in the output object, or
"mean"
, which selects the one simulation with the value of the variable specified invar
closest to the mean ofvar
across all simulations.- var
A character vector of variables to retain from
x
ifsims
is a numeric vector, or a single variable name for selecting the average simulation from the set ifsims = "mean"
.
Value
An updated object of class netsim
containing only the
simulations specified in sims
and the variables specified in
var
.
Examples
# Network model estimation
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
#> Starting maximum pseudolikelihood estimation (MPLE):
#> Obtaining the responsible dyads.
#> Evaluating the predictor and response matrix.
#> Maximizing the pseudolikelihood.
#> Finished MPLE.
# Epidemic model
param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose.int = 0)
mod1 <- netsim(est1, param, init, control)
#>
#> Starting Network Simulation...
#> Sim = 1/3
#> Sim = 2/3
#> Sim = 3/3
# Get sim 2
s.g2 <- get_sims(mod1, sims = 2)
# Get sims 2 and 3 and keep only a subset of variables
s.g2.small <- get_sims(mod1, sims = 2:3, var = c("i.num", "si.flow"))
# Extract the mean simulation for the variable i.num
sim.mean <- get_sims(mod1, sims = "mean", var = "i.num")