

Network Modeling for Epidemics

¹ Model degeneracy

What it is What it looks like What it represents How to avoid it

SISMID: NME 2024

What it is

Technical Definition:

When a model places almost all probability on a small number of uninteresting graphs

- Most common "uninteresting" graphs:
 - Complete (all links exist)
 - Empty
- Model degeneracy is a sign of misspecification
 The model you specified would almost never produce the network you observed

What it looks like in ergm

• Your estimation will fail and you'll get an error like this

Error: Number of edges in a simulated network exceeds that in the observed by a factor of more than 20. This is a strong indicator of model degeneracy or a very poor starting parameter configuration. If you are reasonably certain that neither of these is the case, increase the MCMLE.density.guard co ntrol.ergm() parameter.

- What does this error message mean?
- When trying to fit this model, the algorithm heads off into networks that are much more dense than the observed network.
- Let's see why that is

Let's take a simple example

- This network seems to have lots of triangles
 - 50 nodes
 - 4% density
 - 40% clustering
 - Fraction of all 2stars with the triangle completed
- So it would be natural to fit
 - edges + triangle model

Our network statistics

 We can represent our model statistics as a 2D plot

And our observed graph in this plane

 Statistical theory guarantees that at the MLEs for θ:

E(netstats) = Observed

At the MLE, this is what the model produces

- The theory is not wrong
- Indeed, the means of the netstats are correct
- But this model produces a *bimodal* distribution to get those means
- It would never produce the observed graph

MCMC Dx for a model like this

Figure 5: MCMC diagnostic plots for the model with $\theta = (-3.43, 0.683)$.

from Handcock 2003

 This is an example from fitting an edges+kstar(2) model

- If we let the MCMC iterate for a long time
- You can see the bimodal distribution in both the traceplots and the statistic densities

What this represents: a bad model

- The MCMC-MLE theory is fine, and there's nothing wrong with the algorithm
- The problem is the model
 The simple edges + triangle (or edges + kstar(2)) model would not produce our observed graph
- This is what model misspecification looks like with dependent data

Another way of thinking about this

- With a simple 2-parameter model, we can look at the networks produced (simulated) at all pairs of values of the coefficients
 - Ok, maybe not all, but many, many pairs
- Then answer the following questions:
 - How often does this model produce degenerate graphs?
 - How often does this model produce interesting graphs?

We already know it doesn't produce our network, but does it ever produce ANY networks that look reasonable?

And the answer is ... almost never

Figure 3: Cumulative Degeneracy Probabilities for graphs with 7 actors.

Graph from Handcock 2003

- This is the parameter space for an edges+kstar(2) model
- Shading indicates the frequency of reasonable networks
 - Black = none, all are degenerate
 - Gray = some
 - Light = more
- The only part of the parameter space with a high likelihood of a reasonable graph is close to the parameter set (0,0)
 - i.e., when there is no interesting structure to investigate

This is why we say this is a bad model

- These simple models with the homogeneous Markov graph statistics (k-stars and/or triangles) almost never produce interesting graphs
- So in general, it's best to avoid using these terms
- And instead use better specifications

Key references for model degeneracy

Handcock MS. (2003) Assessing Degeneracy in Statistical Models of Social Networks. CSSS working paper 39.

https://csss.uw.edu/node/4718

Schweinberger, M. (2011). Instability, Sensitivity, and Degeneracy of Discrete Exponential Families. *Journal of the American Statistical Association*, *106*(496), 1361–1370. <u>https://doi.org/10.1198/jasa.2011.tm10747</u>