

1

Estimation

How do you estimate the coefficients of an ERGM?

High level overview

ERGMs are an extension of generalized linear models

Estimation for GLMs typically relies on computational methods

Compared to, LMs, where there is a closed form solution for estimating the coefficients from the data directly

• For ERGM, the computational method depends on the terms in your model g(y)

And there's the additional need for algorithms to compute these model terms

Before you can estimate a model

- You need to specify a model
- This requires selecting the model terms g(y)
- And for ERGMs, that involves an extra step

Calculating the model terms g(y)

- In most statistical models, the covariates, X, are directly observed in the data
- But for ERGMs, the covariates are instead network statistics, which are *functions* of the data: g(y)
 - So every term needs a different algorithm to calculate it
 - Some are simple like the edges term
 - Some are not
 - These term algorithms are typically included in a network analysis package

Model terms g(y) in ergm

- The ergm package has ~125 terms coded up
 - See the <u>documentation</u> for details
- But any configuration can be turned into a term
 - So the ones included in ERGM are not exhaustive
- You can code up your own terms if necessary
 - There's another <u>statnet package</u> for that
 - And <u>online training materials</u>

Moving on to estimation

 Different packages use different methods for estimation

 The ergm package uses Maximum Likelihood Estimation (MLE)

 So we'll start with a brief review of what that means in different contexts

Review: Maximum Likelihood Estimation (MLE)

- The likelihood equation represents the probability of the data under the model
 - $L = P(data | \theta)$
 - The MLE of θ is the value of θ that maximizes L -- the probability of the data under the model
- For traditional linear models
 - Observations are independent, so the likelihood function factors into a product: $L = \prod_i p(y_i | \theta)$
 - Maximization uses calculus to obtain a closed-form solution for the MLE
- For generalized linear models
 - Observations are still independent
 - But there is typically no closed form solution for the MLE
 - So computational methods are used (like iteratively re-weighted LS)
- For network models (generalized linear models for dependent data)
 - Observations may be dependent
 - Computational methods are always used for MLE

For dyad independent (DI) models

- The estimation algorithm is equivalent to that used for logistic regression
 - E.g., Iteratively reweighted least squares
- But you still can't use a standard stat package for these models
 - Because you need to calculate the g(y) statistics from your data
 - And you need a specialized network package for that

For dyad dependent (DD) models

- The observations (ties) are dependent
 - So L doesn't factor into the product of the individual probabilities
 - And we're stuck with an intractable expression

$$P(Y = y | \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta}' \boldsymbol{g}(\boldsymbol{y}))}{k(\boldsymbol{\theta})}$$

Where the normalizing constant $k(\theta)$ can't be calculated

- Here, ergm uses Monte Carlo Markov Chain MLE
 - Effectively a network simulation algorithm that we use for estimation
 - ... and later, also for model assessment and simulation

What is MCMC in this context?

- 1. Specify a model and calculate the sufficient statistics $m{g}(m{y})$
- 2. Set a starting value for your vector of coefficients, θ
- 3. Simulate networks from a model with this θ vector
 - Select a dyad at random (possibly with weights)
 - Propose a tie between the 2 nodes: "toggle"
 - Some are accepted, some not, based on the probability defined by this θ vector
 - Every X toggles, grab the network and calculate the stats $g(y_{sim(i)})$
 - Repeat this step Y times

X and Y are typically > 1000

- 4. After Y sampled networks:
 - lacktriangledown Compare the mean of $m{g}(m{y}_{sim})$ sample to the <u>TARGET</u> stats $m{g}(m{y})$
 - Adjust the coefficients as indicated by the difference (higher, or lower)
- 5. Repeat step 3 & 4 until $g(y_{sim})$ converges to g(y) and the sampling uncertainty is low

SISMID: NME 2025 10

Why it works

- We are getting another benefit of statistical theory here
 - Specifically, the theory of maximum likelihood estimation with exponential family models
- For (all) exponential family models:
 - 1. A defining property of the MLEs is that they will reproduce the observed sufficient statistics in expectation.
 - 2. The MLEs are unique
- For ERGMs this means
 - We can use the observed sufficient statistics, g(y) , as targets for estimating the MLEs AND
 - Simulations from the fitted model will reproduce those g(y) in expectation

SISMID: NME 2025

It works ... but it can be slow

- The larger your network
- Or the stronger the dependence in the model terms
- The longer this will take

- ergm has lots of control parameters for tweaking the MCMC process
 - In R type ?control.ergm for more info

SISMID: NME 2025

MCMC MLE is used a lot now

- In many different fields, not just network analysis
 - Foundation for most Bayesian estimation
 - And anytime you have dependent data
- Relatively recent development
 - The theory preceded the computational feasibility...
 - Nice review of the history: https://arxiv.org/pdf/0808.2902.pdf

SISMID: NME 2025

Did you notice where the data are used?

- Two places:
 - The nodeset you pass to ERGM
 - The g(y) in your model
- The g(y) are the "sufficient statistics"

They are used as targets in the MCMC algorithm

SISMID: NME 2025

What is "sufficiency"?

Intuitively:

- you can only estimate what you observe (obvious)
- but if you observe it, you can estimate it (less obvious)

Formally:

- A principle in statistical theory
- That defines what you need to observe in data
- In order to estimate the parameters in your model
 - The data "sufficient" for estimation

Example: from simple linear regression

The OLS regression coefficient is related to the data as:

$$\hat{\beta} = \frac{Cov(X, Y)}{Var(X)}$$

- I only need to observe these 2 sets of summary statistics
 - Cov(X,Y) and Var(X)
- In order to estimate β
- They are "sufficient"
 - I don't need to have the original data from the individual observations
 - Just these two aggregate summary values

This is very helpful for network models

Because it reduces the burden of data collection

SISMID: NME 2025