
Leveraging the principle of sufficiency
to estimate ERGMs from egocentric samples

Network Data Requirements1
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What is “sufficiency” ?
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 Intuitively:  
 you can only estimate what you observe (obvious)
 but if you observe it, you can estimate it (less obvious)

 Formally:
 A principle in statistical theory
 That defines what you need to observe in data
 In order to estimate the parameters in your model

 The data “sufficient” for estimation
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Example:  from simple linear regression
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 The OLS regression coefficient is related to the data as:

𝛽̂𝛽 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)

 I only need to observe these 2 sets of summary statistics
 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)

 In order to estimate 𝛽𝛽

 They are “sufficient”
 I don’t need to have the original data from the individual observations
 Just these two aggregate summary values
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This is very helpful for network models
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Because it reduces the burden of data collection
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Network data: Three main types (review)

 Network census
 Data on every node and every link

 Adaptively sampled networks
 Link tracing designs (e.g., snowball or RDS)

 Egocentrically sampled networks
 Enroll population sample (“egos”)
 Ask them the usual questions about themselves
 Ask them non-identifying information about their partners (“alters”)

 Timing (start and end of partnership)
 Alter characteristics (sex, age, race, etc.)
 Relational characteristics (type, cohabitation, etc.)
 Pair-specific behaviors (act frequency, condom use, etc.)

 Optional: ask about alter-alter ties
 Optional: ask about perceptions of alters’ alters more generally

5

Often infeasible in practice

Challenging to collect, and  the 
statistical methods for analysis 
are very limited

Feasible, statistically supported 
and general 

“partnership 
module”
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Partnership modules
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 These can be very short, or very long
 DHS AIDS-related module had 6-8 questions – asked in over 25 

countries around the world
(example quex is linked below this slideset in the web book)

 A Ugandan study had a sexual network module with ~70 questions – it 
was almost like a conversation with the respondent

 Module informs both network and epi modeling parameters
 E.g., frequency of acts within partnerships, etc.
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What is observed in the egocentric design?

7

 Degree
 Mean degree, which sets density
 Degree distributions

 Nodal attribute heterogeneity
 Heterogeneity in degree
 Mixing by nodal attributes

 Triads
 Only if the alter-alter matrix data are collected

 Timing
 Start/End, Duration of both active and completed partnerships

We can use what we observe to estimate the ERGM coefficients

Much of the global structure of 
a network is set by these local 

properties
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Egocentric data in ERGMs

 These can be handled in the software quite easily.

 Recall with faux.mesa.high above, we fit the ergm by providing:
 A model formula
 A complete network containing:

 nodes with their attributes
 the relations among those nodes

 But alternatively, one can pass:
 A model formula
 An set of nodes with their attributes
 The sufficient statistics for the terms in the model formula 

 Calculated from the observed data, and scaled if desired
 These are called “target stats” in ergm
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Network statistics in ERGMs
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Option 1: network census Option 2: pass nodeset and targets

net ~ edges+degree(1) net ~ edges+degree(1)
ergm automatically target.stats = c(40, 7)
calculates net stats          targets can come from any data
from the data                 set (or chosen as counterfactual)
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Presenter
Presentation Notes
Again, why does this work?  Because those net stats are sufficient for estimation



We’ll be using this extensively this week
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 EpiModel is designed to work with both
 Complete network data (census)
 Egocentric data with target stat specifications

 You’ll get lots of practice during the labs with target stats

 And we will be reviewing published examples
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What about data for TERGMs?
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 Recall:  Temporal network data study designs
 Panel data of network census (Discrete time)
 Event history of network census (Continuous time)
 Egocentric sample with retrospective information on duration

 It turns out the same principles hold for estimating TERGMs
 Because this is just 2 ERGMs

 So we can use an egocentric sample with duration info
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How to instrument this

 In the partnership module question set
 Ask when a partnership started
 Ask whether it is currently ongoing

 if no: ask how long it lasted (or when it ended)

 Ask what kind of relationship this is (if there are identifiable types)

 From this we can estimate 
 Mean duration of relationships
 Heterogeneity in durations

 By nodal attributes
 By relationship type

12SISMID: NME 2024



Estimating relationship length from data

If you use all of the partnerships, what issue does this raise?
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Censoring
• Ongoing durations are right-censored
• Can use Kaplan-Meyer or other techniques to deal with this

Day of 
observation

Past Future

Unobserved
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https://en.wikipedia.org/wiki/Censoring_(statistics)


 And if your data look like this, what issue does this raise?
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Length-biased sampling
• This can also be adjusted for statistically
• However, complex hybrid inclusion rules (e.g. most recent 3 + ongoing at 

some point in the last year) can make this complicated

Estimating relationship length from data

Observation 
window

Unobserved
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Any one interval is 
more likely to pick 
up the longer 
partnerships, so 
your estimate of 
average duration 
will be too high

https://en.wikipedia.org/wiki/Length_time_bias


If relation lengths are approximately exponential/geometric

 The average time that the ongoing relationships have lasted on the day 
of observation (relationship age) is an unbiased estimator of the 
uncensored mean duration of relationships

 The effects of length bias and right-censoring cancel out

 Surprising, amazing, and incredibly useful here

The simple solution
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https://en.wikipedia.org/wiki/Geometric_distribution


How these data are used in TERGM
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 Recall the approximation from yesterday

 If we know prevalence and duration, we can estimate 
incidence
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Prevalence ≈ Incidence x Duration

Formation 
rate

Inverse of 
dissolution rate

Tie density



Data: One cross-section + duration
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When we pass data into EpiModel as cross-sectional structure + 
durations, the package will:

 Calculate the dissolution coefficient(s) first using data on tie age
 Then estimate the formation model conditioning on the dissolution 

model, using data on cross-sectional network structure

Prevalence ≈ Incidence   x Duration

Data we have Cross-
sectional 
structure

Tie age

Processes to model Formation Dissolution
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Calculating the dissolution coefficient
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 Example:  For the ~edges dissolution model, 𝜕𝜕 𝑔𝑔− 𝑦𝑦 always =1
 So if we observe mean tie age = 90 time steps, EpiModelwill calculate 

(not estimate) the edges dissolution coefficient 𝜃𝜃 like this:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃 𝑌𝑌𝑖𝑖𝑖𝑖,𝑡𝑡+1 = 1 𝑌𝑌𝑖𝑖𝑖𝑖,𝑡𝑡= 1, rest of the graph =𝜃𝜃 𝜕𝜕 𝑔𝑔− 𝑦𝑦

𝑙𝑙𝑙𝑙 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡 dissolves

=𝜃𝜃 𝜕𝜕 𝑔𝑔− 𝑦𝑦

𝑙𝑙𝑙𝑙
𝑃𝑃 tie persists
𝑃𝑃 tie dissolves

= 𝜃𝜃

𝑙𝑙𝑙𝑙
1 − 1/90

1/90
= 𝜃𝜃

4.49 = 𝜃𝜃
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Fixing the dissolution coefficient
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 Once the dissolution coefficient is calculated

 We tell EpiModel to treat it as an “offset”*
 EpiModel will then fit the formation ERGM to the cross-sectional data 

on prevalent ties, and subtract this offset from the edges coefficient
 This transforms the edges coefficient from a prevalence rate (density) 

to an incidence rate (formation)
 The rest of the terms will capture the observed structural patterns

 In R, the standard notation is:  ~offset(edges)

* An offset is a term to be added to a linear predictor, such as in a generalised linear model, with known 
coefficient 1 rather than an estimated coefficient.



Capturing heterogeneity in duration
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There are 3 types of heterogeneity we can represent in EpiModel

 Overall variance in the distribution of duration
 These are stochastic models, so they produce variability in duration even 

for a homogeneous population (the variance of the geometric distribution)

 Heterogeneity by group (nodal attribute)
 Add these terms to the dissolution model

 Heterogeneity by relationship type (tie attribute)
 Separate network models for each type of data

 But ties in one network can influence dynamics in another
 Overlay these networks in the simulation model
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In summary
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 Because this is a general statistical modeling framework

 We can leverage the principle of sufficiency

 To estimate complex temporal network models

 Very efficiently
 Surprisingly little data needed
 Just a single cross sectional sample that is representative of the 

population of interest
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