

Network Modeling for Epidemics

1 ERGMs: General statistical models

Can you control for more than just density?

What if you want to test multiple network features?

And you want a model grounded in generative theory?

... That's when you need ERGMs

SISMID: NME 2024

Limitations of simple null model tests

- If we are **only** interested in whether the triangle counts are different than expected given the density of the graph
 - One can use these simple null hypothesis tests
 - Like a t-test in traditional statistics
- But if we want to understand the underlying generative process, quantify the impact of each process on our network, and control for other network features ...
 - This requires a general statistical modeling framework

Motivation: explaining clusters

What do you see when color-coding the nodes by attributes?

- How much of the clustering is based on grade?
- How much of it is based on race?

Coloring by Grade

Coloring by Race

Grade

Motivation: explaining triangles

<u>Why</u> are there so many more triangles in faux.mesa.high?

- Is it a propensity for triad formation?
- Or just a by-product of grade homophily?

faux.mesa.high network

Simple random graph with the same tie probability

Friend of a friend, or birds of a feather?

Two theories about the process that generates triangles:

- 1. <u>Homophily</u>: People tend to chose friends who are like them, in terms of grade, race, etc. (*"birds of a feather"*), triad closure is a by-product
- 2. <u>Transitivity</u>: People who have friends in common tend to become friends (*"friend of a friend"*), triad closure is the key process

Transitivity and homophily are confounded

But not completely. Any tie may be classified by whether it is:

Within Grade:	Yes	No
Yes	Both	Homophily
No	Transitivity	Neither

Triangle forming:

The cells represent how the processes jointly influence that tie, so the distribution of ties in this table is informative.

This suggests we should be able to disentangle the two processes statistically

ERGMs: Basic idea

• We want to model the probability of a tie as a function of:

- Multiple nodal attributes (that influence degree and mixing)
- The propensity for certain "configurations" (like triangles)
- The dyads may be dependent
 - Nodal attribute effects do not induce dyad dependence
 - But triad closure does
- So we model the joint distribution directly

ERGMs are generalized linear model

If you're familiar with logistic regression, much of this will look familiar

• Both use a logit link:
$$logit(p) = log\left(\frac{p}{(1-p)}\right)$$

- Both have a likelihood function for the data
- Both are exponential-family models
 They inherit all the theory and nice properties that go with those ⁽²⁾
- And both provide a general framework for modeling Not just a way to model one or two specific effects

But ERGMs are also different

- They relax the assumption of independence
 - So they are technically "auto-logistic" regression
- The observations on the LHS are links, not nodes
 - So every prediction is referring to a pair of nodes
 - This is not an "individual-based" model
- And the terms on the RHS are network statistics

ERGM: for the probability of the network

Probability of observing a graph (set of relationships) y on a fixed set of nodes:

$$P(Y = y | \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta}' \boldsymbol{g}(\boldsymbol{y}))}{k(\boldsymbol{\theta})}$$

Note: this is the likelihood function

Where: Y = the network (as a random variable)

g(y) = vector of network statistics

 θ = vector of model parameters

 $k(\theta)$ = numerator summed over all possible networks on node set y

If you're not familiar with this kind of compact vector notation the numerator is: $\exp(\theta' g(y)) = \exp(\theta_1 g_1(y) + \theta_2 g_2(y) + \dots + \theta_p g_p(y))$

ERGM: for the conditional log-odds of a tie

The conditional log odds of a specific tie, y_{ij}

$$logit(P(Y_{ij} = 1 | rest of the graph)) = log\left(\frac{P(Y_{ij} = 1 | rest of the graph)}{P(Y_{ij} = 0 | rest of the graph)}\right)$$
$$= \theta' \partial(g(y)) \quad \text{After some algebra...}$$

Where: $\partial(g(y)) = \text{the change}$ in g(y) when y_{ij} is toggled between 0 and 1

 $logit(\boldsymbol{p}|\boldsymbol{y^{c}}) = \theta_{1}\partial(g_{1}(y)) + \theta_{2}\partial(g_{2}(y)) + \dots + \theta_{p}\partial(g_{p}(y))$

This is an <u>auto</u> logistic regression (auto because of the possible dependence)

ERGM model specification: g(y)

The g(y) terms in the model are summary "network statistics"

- Counts of network configurations, for example:
 - 1. Edges: $\sum y_{ij}$
 - 2. Within-group ties: $\sum y_{ij}I(i \in C, j \in C)$
 - 3. 2-stars: $\sum y_{ij}y_{ik}$
 - 4. Triangles (3-cycles): $\sum y_{ij}y_{ik}y_{jk}$

Just examples, any other configurations can be counted

- A key distinction in the types of terms:
 - Dyad independent (1 & 2 are examples)
 - Dyad dependent (3 & 4 are examples)

Origins of this modeling class

Paper by Ove Frank and David Strauss in 1986 Markov Graphs. JASA, 1986. 81: 832-842.

Defined 1-step Markov dependence in graphs: links are only dependent if they share a node

Showed the sufficient statistics for Markov dependence are k-stars and triangles

This caused a few problems later, as we'll see in module 3...

ERGM specification: $\theta' g(y)$

Model specification involves:

- 1. Choosing the set of network statistics g(y)
 - From minimal : # of edges
 - To saturated: one term for every dyad in the network

NB: statnetWeb allows you to choose from the list of terms and retrieve documentation for each one

- 2. Choosing "homogeneity constraints" on the parameter θ , for example, with edges:
 - all homogeneous
 - heterogeneous by group
 - heterogeneous by node (as fixed or random effects)

Network Modeling for Epidemics

15 Lab

Let's explore ERGMs for faux.mesa.high in statnetWeb

SISMID: NME 2024

We will compare five models

Model	Network Statistics g(y)
Edges	# edges
Edges + nodal attributes (activity levels)	# edges # edges for each grade and race group
Edges + nodal attributes + mixing by attributes (homophily)	 # of edges # edges for each grade and race group # edges that are within-race & within-grade Model 3: uniform homophily; Model 4: differential homophily
Edges + nodal attributes + mixing by attributes + degree(0)	 # of edges # edges for each grade and race group # edges that are within-race & within-grade (DH) # Isolates

In statnetWeb

- Load the faux.mesa.high data again
- Select the "Fit Model" tab

statnetWeb Da	a Network Descriptives Fit Model	MCMC Diagnostics Goodness of Fit	Simulations Help	
Network:	ERGM terms:	Term Docur	nentation Control Options	
faux.mesa.high	edges			
	Add Term(s) Reset Formula	Commonly use Term cross-ref	ed ergm terms ference tables	
		Compatible ter	All terms Select a term	
		Select or sea	arch for a term in the menu above.	* 🕂
		4		•
Current ergm formula:	Add terms to the formula			
Summary statistics:	Add terms to the formula			
Fit Model Save Current Mc	del (0/5) Clear All Models			
Current Model Summary	Current Model Fit Report Model Com	parison		
After adding terms to the	formula, click "Fit Model" above.			
🛓 Download Summary (.txt)				

Add the edges term and fit the model

Network: faux.mesa.high	ERGM terms: Add Term(s) Reset Formula	Term Documentation Commonly used ergm terr Term cross-reference table	Control Options ms es		
	\bigcirc	Compatible terms All ter	Select a term 🔻]	
		Select or search for a te	rm in the menu above.		
Current ergm formula:	edges				
Summary statistics:	edges 203				
Fit Model Save Current Model (0/5) Clear All Models					
Current Model Summary	Current Model Fit Report Model Comparison				
Call: ergm(formula = ergm.formula()))				
Maximum Likelihood Results:					
Estimate Std. Error MCM edges -4.62502 0.07053 	MC % z value Pr(> z) 0 -65.58 <1e-04 ***				
Signif. codes: 0 (**** 0.001	l '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				

Note how the value of the network statistic is displayed

Note the model output, and save it

- Interpret the coefficient
 Log-odds of a tie = -4.6 so
 P(tie) = 0.009 (about 1%)
- Statistically significant?
 Yes, p < .0001
- Meaning?
 Density is much less than 50%
 (density = 50% if coef = 0)

This model is not intrinsically interesting But as a natural null model it is good for comparison

SISMID: NME 2024

Repeat the steps for each model

Add the terms below; fit the models; save the fits

- Model 2: nodefactor ("Grade") +nodefactor ("Race")
- Model 3: nodematch ("Grade") +nodematch ("Race")
- Model 4: reset the model and add this:

edges+nodefactor("Grade")+nodefactor("Race")+nodematch("Grade", diff=T)+nodematch("Race", diff=T)

Model 5: degree(0) that's a zero, not the letter "O"

The fit takes longer for Model 5. Why?

- Because degree(0) is a "dyad-dependent" term
- Now the probability of a tie between nodes *i* and *j* depends on whether either node currently has any ties
 - If i or j has no ties, then this will change the number of isolates
 - There are 4 possible cases (since >1 tie has the same effect as 1 tie):

Dyad dependent terms change estimation

- When all model terms are "dyad-independent"
 - ergm uses the same algorithm as logistic regression
 - very quick
- When you add a dyad dependent term
 - This changes the estimation algorithm to MCMC
 - Markov Chain Monte Carlo
 - This takes longer
- We'll explain all this in module 3

Click the model comparison tab

Current Model Summary

Current Model Fit Report

Model Comparison

	Model1	Model2	Model3	Model4	Model5
edges	-4.63***	-2.294***	-3.9924***	-8.054***	-8.211***
nodefactor.Grade.8	NA	-0.372*	-0.0530	1.520*	1.640*
nodefactor.Grade.9	NA	-0.451**	-0.0630	2.528***	2.683***
nodefactor.Grade.10	NA	-0.628***	0.0109	2.865***	3.076***
nodefactor.Grade.11	NA	-0.299.	0.2330.	2.629***	2.724***
nodefactor.Grade.12	NA	-0.125	0.6924***	3.463***	3.518***
nodefactor.Race.Hisp	NA	-1.123***	-1.5965***	-1.666***	-1.406***
nodefactor.Race.NatAm	NA	-0.747***	-1.1622***	-1.472***	-1.328***
nodefactor.Race.Other	NA	-2.757**	-2.8554**	-2.962**	-2.169*
nodefactor.Race.White	NA	-0.643*	-0.8212**	-0.849**	-0.740**
nodematch.Grade	NA	NA	3.0096***	NA	NA
nodematch.Race	NA	NA	0.8265***	NA	NA
nodematch.Grade.7	NA	NA	NA	7.466***	7.507***
nodematch.Grade.8	NA	NA	NA	4.288***	4.307***
nodematch.Grade.9	NA	NA	NA	2.037***	2.045***
nodematch.Grade.10	NA	NA	NA	1.249*	1.271*
nodematch.Grade.11	NA	NA	NA	2.452***	2.485***
nodematch.Grade.12	NA	NA	NA	1.299.	1.350.
nodematch.Race.Black	NA	NA	NA	-Inf***	-Inf***
nodematch.Race.Hisp	NA	NA	NA	0.691*	0.684*
nodematch.Race.NatAm	NA	NA	NA	1.248***	1.252***
nodematch.Race.Other	NA	NA	NA	-Inf***	-Inf***
nodematch.Race.White	NA	NA	NA	0.314	0.348
degree0	NA	NA	NA	NA	1.291***
AIC	2288	2252	1875	1836	1807
BIC	2296	2332	1970	1987	1966

Looks like standard statistical output

And that's exactly the point

This is a principled, fully general approach to statistical estimation and inference for network analysis

What does it tell you?

Quick preview of model assessment

- The model summaries on the previous slide are one form of assessment
 - Which individual terms are significant
 - AIC and BIC for model comparison
- But there's a network-specific assessment also
 - Does the model reproduce network statistics that are NOT included in the model?
 - If so, then it is a parsimonious summary of the generative processes that produce the overall network structure
 - Like "out of sample" prediction in other settings

Select in order: Goodness of Fit, Compare Saved Models, and Run

statnetWeb	Data	Network Descriptives	Fit Model	MCMC Diagnostics	Goodness of Fit	Simulations	Help
Network:		ergm formula: Model1		•			
		edges					

GOF is based on 100 simulated networks from your fitted model. If you do not specify a term the default formula for undirected networks is wmodel.com networks is www.model.com"/www.model.com networks is www.model.com networks is www.model.com"/>www.model.com networks is www.model.com"/>www.model.com networks is www.model.com"/>www.model.com networks is www.model.com"/>www.model.com networks is www.model.com networks is <a href="https://www.model.com

Goodness of fit term:

Default	
Current Model Compare Saved Models	
NULL	🕹 Download Plots

There is a LOT of information here

And we haven't discussed how these plots are constructed yet

But the key take home messages are:

- 1. Attribute levels and mixing dial in the geodesics
- 2. Degree(0) captures the isolates
- 3. None of these models captures the shared partner distribution

SISMID: NME 2024

So this was a very quick tour

- Of ERGMs in practice
- Just to give a sense of:
 - How easy it is to explore different model specifications
 - How easy it is to jointly estimate the impact of an arbitrary number of covariates
 - How familiar the statistical inference feels
- And we haven't shown simulations from the model
 - But those are easy too

Temporal ERGMs – TERGMs

But first ... a break