

Network Modeling for Epidemics

1 Lab: Descriptive network analyses

Explore with statnetWeb, just a bit

SISMID: NME 2024

Intro to statnetWeb

statnetWeb is a graphical user interface for network analysis

- An Rshiny App
- Runs in a web browser, like epiweb
- Wiki: <u>https://github.com/statnet/statnetWeb/wiki</u>

Using statnetWeb on your computer

Install the statnetWeb package

install.packages("statnetWeb")

Load the package and launch the application

- library(statnetWeb)
- run_sw()

Note: Closing the browser window ends your session, so if you want to save something, do it before you quit

Network data in statnetWeb

 On the "Data" page, you can upload networks from multiple sources

- Internal: built-in networks
- External: R, Excel, Pajek files

nat	rix of relational data (*.csv or *.rds	(i) Srowse No file selected.
		name: NA size: NA
	Matrix Type	Network Attributes
•	 Adjacency matrix 	✓ directed?
	O Bipartite adjacency matrix	
9	Incidonco matrix	
9		
9	 Edge list 	multiple?

Examples in statnetWeb

- Load the "faux.mesa.high" network
 High school network simulated from Add Health data
- We'll explore more network concepts using these data

built-in network 👻	faux.mesa.high
	ecoli1
	ecoli2
This data set represents a simulation of an in school frien	faux.mesa.high
faux.mesa.high because the school community on which	flobusiness
body that is largely Hispanic and Native American.	flomarriage
faux.mesa.high is a network object with 205 vertices (stu	kapferer
(mutual friendships).	kapferer2
The vertex attributes are Grade, Sex, and Race. The Grau	יי ווידימנהטעור דב, ווועוכמנווע פמנ

Attributes

- Individual nodes can have attributes like age, race, sex, etc.
- Explore:
 - Color-code or size nodes on the network plot
 - Sort or search attributes in the interactive table
 - Look at histograms of attribute counts
 - How do these descriptive help you understand the structure of the network?

Node mixing by attribute

- Collapses the adjacency matrix into categories
- Cell counts = # links between nodes in row and col. categories

Mixing Matrix

Grade

10
 11
 12

Degree metrics

Node level: The number of edges "adjacent" to a node

- Every node has a degree deg(i)
- Di-graphs have in- and out- degrees, ideg(i) and odeg(i)
 - Indegree: the number of arcs that terminate at n_i
 - Outdegree: the number of arcs that orginate from n_i
- Network level: The degree distribution
 - Well-known parametric degree distributions: Uniform, Binomial, Poisson, Power-law
 - The degree distribution in an empirical network may or may not resemble any of these

Degree distribution

To view it in statnetWeb:

Connectivity measures: Geodesic

• Nodes are **reachable** if there is a path between them.

- A **geodesic** is the shortest path between two nodes
 - Two nodes have an infinite geodesic distance if they are unreachable

Geodesic distribution

Connectivity measures: Components

- If some node pairs are unreachable, the graph will have multiple "components"
 - subgraphs of reachable nodes
- The component size distribution is another basic property of the network

NB: Think about how this connectivity comes to be created...